+55+

$o%

& & & ¥ &
PR A A PP

& & & &

$
58 R

b
kY
b
b
b
@ b
2358

USErR=dJu QUEUE=LPT UDEvICE=aLPu1
SEu=6 MAPRI=127 LPP=635 CprL=80 CuPlES=1 LIMiT=6Y

CREATED; 7=n0v=77 15:35:16
eNwUEUED : o=UEC=77 14:21:214
PRINTING: b=DEL=77 1U4:35:254

PATH=z:PDUtMEMO tMEMUS327.LS

b P Fo38% b 58 ® FH559 $u % $5%23 % P58
»3 3¢ % »% f» % % 683) % @ § %) ®
Y P ¢ » > » ¥ $ o v $ » > h] b

P » 5 $8%Fy PP v 0% % $5% 288 % 3 3 5%
$ » § R 3 % b P o $ $ 3 3 b
b » ¥ by » & $ »5»S $ F » B 2§ 3 b »
¥ » $5%5% B K PP b S0 28282 b ¥ Fob5 8 $5 8

+55+

A0S XLPT RV 01.00

To: all interested
From: Walter wallach
Subject: FURIRAN S~-Language (Revised)

Date: 7/Nov/77 Memo No. 3c¢7

Apstract:

This memo revises Memo 511, the FURTRAN GS~-Language opecification.
A Floating Point Data Error txception s introauced to <cabture
invalid or unnormalized floating point data.

1 FURTRAN S=Language

In the followina description of the SPRINT FURJRAN dialect,
type adefinitions, instructions definitions, and most instructions
are written in SPL.

1.1 Operand Types for the FURIRAN S=Languaae

Instructions are of two vasic types: arithmetic and controie.
The arithmetic instructions define operations on one, two Oor three
operands ranging from simple assignment (move) to CuMPLcX aritn=-
metic and transcendental] functions. ihe control instructions each
define some decision and branch. The decision may pe bpasea on a
comparison or an arithmetic result, or 1t may be wunconaitional
(6070 or CALL). The pbranch may be relative to tne l=stream or
apsolute (relative to the start of some procedure object).

1.1.1 Relative branches

A relative branch instruction specifies as an operana a
"relative offset" syllable. This syllable 1is a k=-bit literal
denoting a signed, integral, nioble granular offset relative to the
current PU (1.e.r the address of the 1i1nstruction containinyg the
relative branch. Thek=bit relative offset syllable 1is wmultiplied
by tfour to obtain a bit=aranuiar offset and then sian=-extended to
3¢ pits. This value 1s then added (2°s complement addition) to the
offset portion of the current PC. 1i1nterpretation resumes at this
new I-stream location.

Note that a relative branch is always intra-rrocedure Object,
since only the offset of the PC is mogified.

Memo no. 3¢7
T/nwov/ (7
page 2

1.1.2 Offset Branch

An offset branch is an intra-Procedure Ocoject branch specified
relative to the start of the current Frocedure Ubject. An oftfset
name operand is evaluatea (like any other namej, yielaging an
integral offset (signed or unsiyned, as specified in the associated
Name lable Entry). This offset vaiue represents a Dit=yranular
offset which 1s auded to the offset portion of the current rro-
cedure Ubject Pointer (POPTR). The result of this adaition repla-
ces tne PC.

1.1.3 Data Representations

The FORTKAN language defines two classes of storade whicne DY
definition, may never overlap in a "standard conforming" prodgranme.

All addresses are pit granular, locating containerizea dosta.

A1l lengths are bit lengths, In general, operand lenaths are
specified in the length field ot the operand’s NTt. 1N some cases,
however, the opcoaue may imply a length. Jyata representation is

always implieg in the opcode. O typPe checking is pertormed; tne
type field of the MJE is ianoreu.

1.1.3.1 CHARALTEP Data

The first storage class is that of a CHARACTLR machine. ihis

machine is implementea as an ov=pit byte containerized machine:
where bytes reside at addresses divisibie DY B The stancard

insures that (HARACTER data may not oe FaUiVaLeNCED to
non=character data.

in most cases, tne length of a character string is known at
compile time, when the length may vary (character parameters),
length may pe specified "as a name" in the ivame Japnle. In these
cases, length should be passed as an IM[/FEwEK parameter.

1.1,3.2 Classical FURTRAN Data

The second storage class is that of a "classical" FUR|RAN
machine, a containerized storage machine with the expecteag FuR|jRAN
operations. we implement this class as a lo=pit wora machine
(addressed in a bit=granular fashion) and utilize data representa-
tions compatible with ItM 360 and ECLIPSE data types. Jhere are no
restrictions concerning word alignment otner than the policy that
all containers will begin on a bit adaress divisiple oy lo.

Memo no. 327
(/Nov/ (7
page 3

1.1.3.2.1 INTEGER

All 1ntegers are 2°s complement ana occupy one 3Z2-pit storage
container. All INTEGER operations are ¢°s complement operations.
Overflows are detected on completion of an operation that overflows
the container and prior to storing the result.

INTEGER data is addressed at its left-most (1.e. low=sddress)
end, right=justified ano sign=filled on the left, truncated on the
left (see discussion of "Execution txceptions" below).

TYPE integer 1S BRiT(32) TAKEN A3
=(2**31)..0 (g*x%x31)=1);

1.1.3.2.2 INTEGeRx?

INTEGER*Z is a2 half=size 2°s complement integer. It difters
from INTEWER only in length.

INTEGER*2 data 1is addressed at the left=most (i.e., low
address) end, riant=justified and sign=filled on tne left, trun=-
cated on the left (see discussion of exceptions).

TYPEL integer*2 (S BlTile) TAKgM A
=(2x%x15) .. (2*xx15)=1);

1.1.3.2.3 REAL

All sinole precision PEAL wvalues occupy a sinale 52=bit
storage container and are "IBM format" pbinary floating point (i.e.»
an algebraic sign byt followed by a 7=bit, excess=h4 hexsdecimal
exponent, foliowea by a Z24=-bit hexadecimal normalized mantissa).

REAL data is addressed at the left=most (jow=adaress) enar
left=justified ana zero=filled on the right, truncated on the
right.

Memo no. 3¢7
T/80ov/ (7
payge 4

TYPt real Io BlIlT(s52) 1AKEN AS RECURD
sian :(u=positive, l=negativeJ;
exponent tBIT(7) TAKEN AS 0,.12/7
mantissa tBIT(24) TAKEN AS Uel.(2%x%24)=1;
END ReCUuRD?

e e e e T W R W e U AT G R W T e R WD G R YR W AR e R W O e W R S e e e e

I s | exponent! mantissa |
1(1) 1 (7) | (24) [

1.1.3%3.2.4 CuMPLEX

LOMPLEX data is represented in storage as an ordered pair of
ReAL values, addressed as a unit by addressing the low=adaress end
of the low=aduress KREAL value, The two values represent tne regal
part and the imaainary part of a CLOMPLEX value, respectively.

The two values must pe fetched sevarately anu processeu as two
different REAL wvalues. tach part Js fetched Jleft=justified,
zero~filled, truncated on the riant,

" - - " | o e o w n w - - - -

| s | exp | mantissa I s | exp | mantissa |
Py i) (2u) L)y ¢7) (ets) i

'..loo-i’\FAL partqntluooiuollt.o..cl“iAb Par‘t....‘.-...

TYPL complex 1S ReCuRD
reai_part:real;
imag_part:real;’
END RECURD?

1.1.3.2.5 Duligle PReCL1SION

vouhle precision data occupies two 3Z=bit storagde containers.
No address alianment restrictions are enforced; any 3%2=bijt con=
tainer may be the start nf a doupnle obprecision value. The «wata
representation 1s also "IoM format” (sign byt followed by a 7=vit,
excess=6d4 hexadecimal exronent, followed by a So=-pit hexadecimal
normaiized mantissal.

vMemo Nno. 3c7
7/Nov/ (7
paye S

bouble precision values are addressea at tne low= aduress enar
left=-justifiea, zero=filled on the right, truncated on the right.

o - o - - - - -}

Il s | exp | mantissa |
L)y (7)) | (506) l

o o e o . " " " - = = o -

TYPE uouble_precision Is usli(od) TAREN AS ReCuRu

s1an t(0=positive, lz=neaative)
exponent T T(/) TAKLN AS O..1¢7.,
mantissa sl T(56) [AKEN AS

Qee(2%kx56)=17
END ReCuURD:

Type DUUpLE PRECLISION aiffers from RcAL in lengtn oniy.

1.1.3.2.6 COMPLEX DU!BLE

LOMPLEX UOUBLE datas 1s representea as an ordered pair of
DoUpLE PRECLISION values, addressed from tne low=address end ot the
low=aadress value. The values represent the real part ana the
imaginary part of a CuMPLLtX value, respectively. They are fetched
separately, left=justified, zero=filled on the right, anu treated
as two DOURLE PRECLISIUN values,

TYPEL complex_double I5 RECORD
real_part tdouble precision;
imaginary_part :doublie precision;
END RECURD:

1.1.3.2.7 LUGICAL

LOGICAL date is represented as a %2-bit containerizea bit
vector, of which only the first (low=address) bit s significant.
The rest of the container is ianored. The FORTRAN standara re=
quires that LUGICAL s be represented in this way.

LOGILAL data is addressed at the jow=aduress endy
right=justified and sian=filled, truncated on the right.

vMemo no. 3¢7

1/nov/i17

page 6
1.1.3.3 General Notes on Data Types

Length and fetch mode fielus dictate alignment asnu pardainag

upon agata fetch and truncation upon dats store. Sianiticant o©oits
of a tloatina point (REAL or ULOUBLE PKECISIUN) vaiue lost through
truncation are 1anorea. Significant bits ot an InTcGeR value lost

due to truncation are considerea a fixea point overficw and must
generate an exception trap.

Arithmetic instructions are typpea only, ang imply no
containerijzation. Uperand length is specified o©y the operand’s
associated WTe. The NTE also controls fetching and storina (i.€.,
dictates justification, fill, and truncation). By policy, a
compiler will never aenerate an uncontainerizea instruction with
difterent operand sizes., Such an instruction 1i1s undefined within
the FURITRAN machine.

Lertain instructions do denrote containeprization, These
instructions implement untyped bit moves, conversions between Jdata
representations, and/or containerization changes. The opcodes of
such i1nstructions are uniqgue.

1.2 Execution Exceptions

The FORTKAKN machine detines a number of execution exceptions.
When an exception arises, several scenarios are possivle. The
first is to trap immediately with an appropriate error indication.
The secona is to totally ianore the exception and store a possibly
incorrect result. A third scenario is to suppress the exception?
i.e.r store some approximate result and continue processing. In
any caser, a record of the exception is made in viptuail machine
state which may be tested (and cleared) by the proaram at a later
time.

The following is a list of execution exceptions?

0 == cxponent Overfiow

The result of a REAL or DuUbLt PxECISIUN computation has
exceeded the range representable by the wmachine, If the
exception is ianored, the exponent wraps around, so the
resulting exponent 1s the the low order / bits of the
proper result exponent. if the exception is suppressed, a
result of infinity (i.e., the largest value representaple)
is stored with the proper algebraic sian.

1

2

4

5

Memo no. 3¢7
7/Nov /17
page 7

-= cxponent Underflow

The result of a RiAL or DulUplLt PReCLSION computation 1s too
small to be represented by the machine. 1f the exception
is i@norea, tne exponent wraps arounar, so the resulting
exponent 1s the low order | bits of the proper resuilt
exponent. 1f the exception is suppressed, a result of
1/7infinity (i.e., the smallest nonzero vaijue representable
by the machine) is stored with the proper aicebraic sian.

rloatina Point Divide by Zeru

A RcAL or DOOQURLE PRECISION division by zero has w©een
attempted., This exception may not pe ignored. 1lf 1t s
suppresseadr, a result of infinity (i.e.r the Jlaraest value
reoresentable by the machine in floating point) 1s stored
with the proper alaebraic sian.

Floatina Point Data Error

The value recieved as a floating point operand 1s either
not properly normalizeud or is unnormaiizable (e.g., a
ronzero exronent and zero mantissal), If the exceotion 1s
ignored, the value is normalized prior to attemptinyg tne
operation (or a true zero is 1nserted). Iihe exception may
not be suppressed.

Illegal uperanu value

The araument of an operation is out of range; for example,
EAP(x) where raising e to tne x wouid result in an exponent
overflow. If the exception is i1anoredrs the operation 1is
attempted with the srecifiea value. ANy subSequent excep-
tions are hancdled as they occur. This exception imay not ve
suppressed.

-= Protection or Access Violation

No response other than trap is possibie,

Memo no. 3¢7
7/0ov/ 7
paye 8

6 == Fixed Point Uverflow

A fixed point (INTEGLEK) result contains more si1anificant
bits than can fit in the specified container. Signiticant
data bits (1.e., Dits other than copies of thne sign wvit)
must pe truncated from the left end of the resuijt,

The result is not stored.

lhis exception may not be 1gnored or suppresseu.

7 == INTEGEx Conversion Error

The result of a FIX operation cannot fit in a 3¢ bit
IWTEGER container. No response other than trap 18
possible.

& == Fixed Point viviue hy lero

Integer divide by zero has veen attempted., This exception
may not be janored or suppressed.

9 == (llegal [ntra=Procedure Jbject Aaudress

An absolute name syllable resolvea to an address wnich s
not within the current procedure opject. This exceotion
may not be j1gnoreg or suppressed.

1y == Size trror

The source operand in an assignment operation is too large
to fit in the specified sink operand. If this exception is
ignored, the source is truncated to fit in the sink con-
tainer (on the right for floating point, on the left for
INTEGER and CHARA(CTER).

1.3 Virtual Machines for FORTRAN S=-Language

The FORTKAN S=Lanauaye standard defines two disjoint <ciasses
ot storace: CHAxKACTER and classical. For the purpose of manipula-
ting these data classes, we define two slignhtly overlapping virtual
FURTRAN machines. The untyped MOVE instruction is shared oy ©poth
virtual machines.

pemo no. 3c¢7
[/iov/ 17
page 9

1.3.1 CHARACTER Machine

CHARACTER_IE Uperations.

Moves are accomplished using the untyped move i1nstruction.

* if_=string <name=a> <name=b> <relative offset>
character strings "a" and "b" are <compareud and, if -eqgual, the
relative oranch is taken. Utnerwise, the next seguential instruc=

tion i1s executed.

Exceptions: 5
* if_>string <name=~a> <name=b> <relatijve offset>
character strings "a" and "v" are compared and, if string "a" is
areater than string "u," the relative branch is taken. Note that

the bytes are compared as unsianed, B=bhit values.

Exceptions: 5
* if.>=string <name=a> <name=b> <relative offset>
character strings "a" and "o" are comparea anag, if string "a" s

greater than or eqgual to string "v," the relative branch 18 taken.
Otherwise, the next seauential instruction is executed.

Memo no. 3¢7
7/nov/ (7
page 1lv

Fxceptions: 5

Notes:
Strings are addressed from low=aduress enc of left=most byte.

Strings are compared as unsigned, d=pit values, space filled
on the right 1f recessary to mAake the comparand strinas equal 1in
length.

Substrina Qperation

The substring operatior is realized by treatina the string as a
cnaracter array, i.e. using the indexing facility to Jlocate the
start of the supstring and using the untyped move to move the
desired characters,

Concatenate Operation

The concatenate operation is simply an untyped move, coupleg to an
integer arithmetic operation of the "nameg" lenath if necessary.

The operation on the length is included as a separate instruction
in the [~=stream.

Memo no. 3¢7

{/nNov/i7

page 11
* move_spac <name=a>
ASCII spaces are moved to the string operand "a." The number of
spaces to be stored is determined by the ienagth of "a." 1f <jength
of "a"> mod 8 is not zero, a size werror exists, and the |last

character stored is truncated to fit in the source strina.

Excentions: 5, 10

1.3.2 Cilassical FURTRAN Macnine

1.3.2.1 Unary Operations

* MUV <name=b> <name=a>

move value of "b" to variable "a." This is an untyped move. It 1is
assumed that this instruction s usea to move values between
joentical containers,

Exceprtions: 5, 10 (containers not identical)
* MUVREAL <name=b> <name=-a>
Floating point value "b" 1s moved to floatina point variabie "a.,"

If necessary, "o" is zero extended on the right or truncateu on the
right to fit properly in "a’s" container.

Fxceptions: 3, 5

Memo no. 327
1/7viov/ 17
paye 1¢

* MUVCMPLA <name=b> <name=a>

Both components of LOMPLEX value "b" are zero extended or truncated

to fit the containerization of LOMPLEX variable "a." Facn compon=

ent replaces the corresponding component of "a".

Fxceptions: 3, 5

The above instructions implement conversions between RpAL and
CuMPLEX containerizations.

* IFIX <name=~a> <name=i>
IFIx converts RpAL or DuUplLc PRECLSiOn value "a" to INIEGLER (or
INTEGERX2)}7 the result replaces TnNTEGER variable "i."
Exceptions: 3, 50 7
This instruction imoiements a KFAL to I[MJELFr conversion, The

source operand may pe RcAL or DUlple PRECISiON? the sink operand
may be INTEGEK or INTELGER%Z2.

* FLOAT <name=i> <name=a>

InNTEGER or LNTJFGLER%xZ value "i"™ 1is converted to rwREAL or DOUBLE
PRECISIUN. The result replaces RtAL or DuUslt PRECTSIUN wvariabie

"a.ll
Exceptions? 5
[his instruction imolements the conversion from InTEGER or

INTEGER*2 to REAL or ULOUBLE PRECISION, Lengths are implied by the
operands’ NTE’s,

Memo no. 327

7/hov/ (7
page 15
1.3.2.2 Pointer Instructions
The following 1nstructions build and convert rpointers. The

FURTRAN standara does not define pointers, nhowever, tney ore still
neeged to address parameters and resolve external calls,

* PTRK <name=a> <name=p>

The pointer value "g" is movedu to pointer variable "a." Pointer
formats may be changea tor efficiency.

Fxceotions: 5
* ADDK <name=a> <name=p>
The logical address of "a" is moved to pointer "p". |Ihe tormat of

the stored pointer 1s chosen for efficiency.

FExceptions:)

iwo pointer formats are useful within the FORTRAN machine: the
UlD pointer and the self=absolute pointer. Since self=absojute
pointers are more efficient, they are useg whenever possible.

A pointer is always converted to internal format upon fetch.
It the source pointer was a selt=absolute pointer, the internal U]LD
ot the pointer’s Joygical address 1s 1inserted as the fetched
pointer’s internal UIU. If the internal UIu of this pointer is the
same as that of the destination variable’s Jogical acdress, the
pointer is stored as a self=-absolute pointer. Otherwise, the
internal Uulu must be convertea to a real UID and the pointer stored
as a full ULD pointer,

In pushina parameter pointers, the <call dinstruction ©pujlds
self=absolute pointers whenever the parameter resides in the stack
object (when the parameter’s Jjogicai address reflects the ULD of
tne stack object, in whicn the parameter pointer will reside).

Memo no. 3¢7
7/Nov/ (7
page 14

1.3.2.3 Data Lonversion Instructions

* NeG <name=b> <name=a>

Compute 0.00 minus KEAL or UQUBLE PRECLISTIUM value "o", tne resuit
replaces REAL or UOUBRLE PRECISIUN varijaole "a'".

Exceptions: 2, 5

* INEG <name=~j> <name=i>

Compute the 27s complement of INTLGER or InNTEGER*xZ2 variable "j,
the result replaces INTEGER or INTELER*Z variable "i."

Exceptions: 5S¢ ©

* ASS <name=-b> <name=a>

Compute tnhe absolute value of RtAL or DulUglkt PReCISION value "b,"
the result replacing KREAL or DOUBLE PRECISIUN varjaple "a.,"

Exceptions: 3, 5

Memo no. 327

{/Nov/ (T
paye 15
* IABS3 <name=j> <name=i>
Compute the avsolute value of INTEGELR or INIEGEK*Z value "y," the
result replaces InTEGER or INTEGER*Z variable "i."
Exceptions: 5
1.3.2.4 ASSIGWNMENT Instructions
In the following instructions, "real" means either xEAL or

DuUBLE PRECISLON? "integer" means INTEGER or [NTEWER*z. oy policy.
no compiler will generate an instruction with aiffering operand
lengths. Sucn an instruction is undetineaq.

1.3.2.4.1 Two Address Real

* ALDZ <name=a> <name=b>

Add the real values of "a" and "b," the result replacing "a.

Fxceptions: 0, 1o 3, b
* SUBZ <name=a> <name=b>
Subtract the real values "a" and "b" (a minus D), tne result

replacina "a."

Exceptions: 0, 1, 3, 5

Mmemo no. 3¢7
7/nov/ (7
page 1o

* MUL¢ <name=a> <name=b>
multiply real values "a" ana "b" (a times h), the result repiacing

"a.ll

Excertions: 0, 1, 3, 5

* DiVe <name=a> <name=b>

" "

DiVe aivides real value "a" by real value "p," the result replacing
" "
a L]

Exceptions: 0, 1o 2+ 3, 5

1.3.2.4.2 Two Address Integer

* IADL? <name=i> <name=j>

Add inteaer values "i" and "j", the result replacing "i"

Fxceptions: 5, 6

Memo no. 3¢7

7/n80v/ (7
paygye 1/
* IsUs2 <name=i> <name=j>
Subtract integer value "ji" trom "1", the resuit replacina "1 ".
Exceptions: 5, ©
* IMULZ2 <name=i> <name=j>

Multiply integer values "i" and "j", the result replacing "1"

Exceptions: 5, 6

* IvIvV2 <name=i> <name=j>

Divide integer value "i" py integer value "y", result repjacina " "

Exceptions: 5, 6, R

1.3.2.4.3 Two Agdress LuUGjiCalL

* NUT <name=b> <name=a>

loagical complement of bit string value "b" replaces bit string
varijaple "a"

Memo no. 327
7/hov/77
page 16

Exceptions? =

1.3.2.4.4 Three Address Real

* AUD 3 <name=-p> <name=Cc> <name=a>
"

add real values of "b" ana "c", result replacing real varjavle "a

Exceptions: 0, 1, 3, 5

* SUB3 <name=b> <name=Cc> <name=a>

subtract real values of "p" and "c", resuit replacina real variahile

“all

Exceptions: 0, 1, 3, 5

* MUL S <name=pD> <name=c> <nagme=a>

multiply real values of "b" and "c", result replacing reai variable

"a"

Exceptions? 0, 1, 3, 5

Mmemo Nno. 3¢7

7/wov/ (7
paye 1¥
* NiVs <name=b> <name=Cc> <name=a>
divide real value ot "b" oy "c", result replacina "a"

Exceotions: 0, 1r 24 5, 5

1.3.2.4.5 Three Adgdress Complex
In tne followina instructions, each name operand refers to a

pair of real or double precision values representing complex
(either complex or compiex double) values.

* CADD3 <name=b> <name=c> <name=~a>

Complex values "b" and "c" are auded, real part to real part,

imaginary part to imaginary part, the vresult replacing complex

variable "a"

Exceptions: 0, 1+ 3, 5

* CSUb3 <name=b> <name=c> <name=a>
Complex values "b" anu "c" are subtracted ("c" from "o"), real part

from real part, imaginary part from imaginary pAart, tne resuit
replacinag complex variapole "a"

Exceptions: 0, 1, 3, 5

*

Complex
complex

Complex
complex

Memo no. 327
(/wov/i7
pagye 2u
CMUL3Z <name=bh> <name=c> <name=a>
values "b" ana "c¢" are multipliear the result replacing
variable "a".
Exceptions: 0, 1r 3, 5
Note: Lompiex multipiication proceeds as follows:
"b” - r + Js llcll - t + ju
bxc = (r + ysj) * (t + ju)
= (pxt + rXxjul) + (js*t + jsxju)
= rt=su + jx(ru + st)
where REAL (b) =r, IMAG (p) =s; ®REAL (c) =t IMhAL (cJ) =u

CUIV3 <name=bh> <name=c> <name=a>

ruies for

"all.

values "b"
arithmetic,

and "c" are dgivided according to the
the result replaces complex variavle

Exceptions: 0, 17 24 5+ S

is the definition of complex division:
tE / ¢ for a, or and c

Note: ihe following
given the operation a =

complex variables,

REAL (2) = (REAL(p)*RpAL(c) + TMAL(p)*xIMAG(C))
/ C (REAL{(c))x*x2 + (IMAGL(c))*xx2)

IMAG(a) = (IMAG(b)*REAL(c) = REAL(R)X*x{MAG(cC))

/ C (REAL(c))x*2 + (IMAG(c))*x2)

Memo no. 327
7/idov/ (7
page 21

1.3.2.4.6 Three Agdress Integer

* IADL3 <name=j> <name=k> <name=i>
* IsUB3
* IMUL3

Add, subtract, or multiply integer values "y" and "kx" (y+kr j=k, or
"o

J*k), the result replacing integer variable "i",

Exceptions: S ©

* ImOu3

Divide integer values "j" by "k"; the remainder of this qivision

replaces i1nteger variabie "ji".

Fxceptions: S, b6, 8

Memo no. 327

T/vov/i(7
page 2¢
* TLIv3
divide integer variables "j" by "k", the quotient of this wuivision

replaces integer variable "1",
Exceptionss S, 6, 8

1.3.2.4.7 Three Address LUGICAL

* AND3 <name=y> <name=k> <name=1i>
* Ok 3
* XUR 3

Logical "and", "or", or "exclusive=or" bit strina values of ";" and

"k", result repiacina bit string variable "i"

Exceptions: 5

1.3.2.5 IF lnstructions

Two=comparand instructions specify three=operand syllaoles==~
two names followed by a relative pbranch syllaple.

Uune=comparanag instructions specify two=operand syllablies==one
name followed by a relative brancn syilable.

Memo no. 327
{/viov/ (7
paye 25

Kelative branch syllables are signed, nioble=granular values.

Lf the relation is satisfied, the current PL is uprdated by
sign=extending the relative brancn operand value, multiglying it oy
four, and adding it to the PC offset, effecting a branch that s
relative to the start of the IF instruction. oee "Relative
Branches" in the aobove section titjeu "uperana Types ftor the
FURTRAN S=Language."

1.3.2.5.1 Two Comparand IF°’s

The following operation coaoes operate on either real or
integer data. both comparands must be of the same type.

* IF= <name=a> <name-p> <reljative offset>

LU "

The real or integer values of a anag "b" are comparea Alae-
braically and, if tney are equal, a relative pbranch is taken.

Exceotions: 5

* IF<>

The real or inteaer values of "a" ana "p" are comparea alae-

braically and, if they are not equal, a relative pbranch is taken.
Exceptions: 5

The foilowing operation codes operate on a particular gate
type.

Memo mo. 327

{/Nov/iT
page 24

* IF_a>o

The real values "a" and "o
greater than b, a relative branch is taken.

Exceptions: 5

* IF_a>=b

The real values "a"

greater than or equal to o, a relative branch is taken.

Exceptions: 5

* IF_1>

The integer values "i" and "j" are compared algebraically and,
is greater than J, a relative branch is taken,

Exceptions: 5

* TF_i>=]

The integer values "i" and "j" are compared aigebraically and,
is greater than or eauaij to j, a relative branch 1s taken.

Fxceptions: 5

are compareqg algevraically anu, it a

and "pb" are compared aolbegraicalily ana, it a

1 f

) f

1S

is

i

i

Memo no. 3¢7
7/80v/ 17
page 2b

1.3.2.5.2 0One Comparand IF’s

The following operation codes operate on either real or
integer data. 1lhe second comparand is implicitly a true zero.

* IF=0 <name=a> <rejative offset>
The real or inteaer value of "a" is compared algeoraically to a

true zero and, 1f a equals zero, a relative branch i1s taken,

Exceptions? 5

* IF<>0

The real or intecer value "a" is comparea algebpraically to zero
and, 1f not eqgual, a relative branch is taken.

Fxceotions: 5

* IF>=0

The real or integer value "a" is compared alaebraically to zero

and, 1f not less than, a rejative branch is taken,

N

Fxceptions:

Memo no. 327
i/viov/i17

page 2o

* IF<=0
The real or integer value "a" is comparea algebraically to zero
and, if not areater, a relative branch is taken,

Exceptions: 5
* IF>0
The real or inteaer value "a" is compared aldgebraically to czero
and, 1f areater tnan, a relative pranch is taken.

Exceptions: 5
* TF<y
The real or integer value "a" is compared alaebraically to zero
and, 1f less than, a relative branch is taken,

Fxceptions:? S

1.3.2.6 GUTO Instructions

Memo no. 3¢7

7/nov/ (7
page 2/
* GU_REL <relative offset>
The current PL is updated by the relative branch syllaole. See

"kelative Branches" in the above section titled "Uperano iypes for
the FURIRAN S=Languaqge.)

Exceptions:? S

* GU_OFFSET <name=i>
The integer value "i" repjaces the offset portion of the current
PL, etfecting an intra=-procedure object branch.

Exceptions: 5

Ihis instruction 1s wused to implement A3SiGwea Gu’s and
branches beyond the range of a relative syllable. A FOkTrRAN label
is assigned to an INTEGER varjanle vy moving an inteqgral literai.

* GU_COMP <addr=count> <name=-selector> <relative_offseti> ...
<relative_offsetn>

This instruction is a computed LOTO, [he first operana 1is a
literal syliable denoting the numoer of branch addresses specifieda.
The second operand 1S the name of an integer variable representina
the selector value. uUne relative branch syllabie follows for each
branch address specifiea in the literal count operand,

Fxceptions: 5

Memo nNo. 3¢7
[/8ov/iT
page 206

PROCEDUKE Gu_comp (addr_count tliterallo,
name_selector:name,
oftset_list tarray laddr_count]
of relative_oftset,;

IF U < evall resoive(name_selector)) < addr_count
THEN
P = PL + offset_l1stl eval(resjove(name_selecto
ELSL
next_sequential_instruction;
EnDIF;
END PROCFUURE GU_comp;

1.3.2.7 DU Loop Control

* BCT <name=i> <relative offset>

The integer value of "i" is compared to zero and, 1if egual, the
next sequential instruction is executed., Otherwise, 1 is decremen-
ted by 1, the result replacing 1. Followina this, a rejative
branch is taken.

Exceptions: 5, 6

It may be assumed that i is decremented ana the oranch is
taken every time,

Memo no. 3¢7
{/viov/ (17
page 2+

PXOCEUVUKE bct (name=i iname,
relative_offset :literall6);

VARIAvlt operana_ptr POINTER?
EnND VAR]ABLLES;

operand_ptr := resoivel(name=1)7’

IF operand_ptrad = 0
THEN next_sequential_instruction
FiLSt
operand_ptre := operand_ptra = 17
PC := PL + relative_offset;
EnD IF:

EnD PROLEVURFE bcts

* BxLt <name=1> <name=inc> <name=limit> <relative offset>

* BXH

The integer values of "i" and "inc" are added, the result repiacina
i. Tne result 1s compared algebraically to integer value "limit",
A relative branch is taken if the comparison yields |ess than or
equal (BXLE) or areater than (oXd). This instruction functions
identically to the 360 8XLE and BXH instructions.

Exceptions: 5, 6

MEemO NO.
7/wov /17
page 30

PROCELUURE BXLE (name=) thame,
name=13inN¢ tname,
name=limit thname,

relative_offset tliterallo);

resolvel name=i Jw := resolve(name=i Juo +
resolve(name=inc Ja;

IF resolvel(name=i)@ <= resolvel(name=jimit)a
THEN FC 2= FPC + relative_offset
ELSE next_sequentiai_instruction
EnD IFs

END PROCEUURE BXLts

* BALEl <name=i> <name=limit> <relative offset>
The value of LNTEGER variable "i" is incremented by 1, tne
replacina i. If the result is less tnan of equal to LNIEGEK
"Timit", the relative oranch to "“relative offset" s
Otherwise, the next seaquential instruction 1S executed.

This instruction functions identically to "sXLE"™ witn
implicit increment of 1.

Exceptions:® S, 6

1.3.2.8 Miscellaneous Instructions

327

result
value
taken.

Memo no. 3%¢7
[/nov /7
page 31

* INC <name=-i>

The integer value "i" is incremented by 1, the resuit replacina 1.

Exceptions: S, b

* DeC <name=i>

" "

The integer value "i is uecremented by 1, the result repiacing i.

Exceptions: 5, 6

* ZERU <name=-a>

Variable denotea vy name "a" is cleared to a true zero. note that
this is an untyped operation.

FExceptions: 5

* ONE <name=i>

Integer value "i" is set to a 2°s complement value of one.

Exceptions: 5

Memo no. 327
{/dov/ 17
page 3¢

* ALLUNES <name=1i>

Integer or iogical variable "i" is set to a 2°s complement negative
one (or the loaical complement of zero, i.e. all ones).

Exceptions: 5

* SET_PLSPONSL <exception#> <scenarijou#>

This instruction informs the FORTRAN machine of the desired excep-
tion response. The first operand is a literal syllable reprresen=-
ting an exception numoer (0 to ¥). The secona operand is a literal
representinyg a response scenario (0 to 2 in the case of the FURIRAN
machine). Refer to the section on exceptions for a discussion of
possible exceptions and responses.

Exceptions: 4 (illegal exception#¥ or scenario#)

* TESI_EXCEPTLION <exceptions> <name=1i>

This instruction tests for the occurrence of an exceptional
condition., Tne first operand is a literal genotino an exception #.
The second operand is a name denoting an INJELER variahie. It the
specitied exception has occurred, the exception recorg 1is cleared
and an integer value 1 is stored replacing "i". Utherwise, an
integer value zero replaces "i".

Exceotions? 4 (illegal exception #), 9
1.3.2.9 CALL/REJURN Instructions

Three types of calil instpructions are included in the FuRjRAN
S~Language. The first two implement internal <calls; the tnird

Memo nPo. 3¢7
i /ivov/T7
page 3%

implements an external call,

1.3.2.9.1 Internal CALL’s

* PUSHJ <relative offset>

The offset of the current PL is pushed onto the stack and a rela-
tive branch is taken. iote that this instruction does not cetine a
new stack frame,

Exceptions: 5

* PuPy

The 3¢=pits on the top of the stack (whether or not they represent
a value) are assumedu to be a unsigned integer, The offset of the
current PLU 1s replaced by this value. The POPJ instruction 1mple~
ments a return from subroutines entered by rUsSHJ.

Exceptions: 5

The above call is always intra=-languace. no entry heavers are
evajuated in such a call.

The actual format of the pushed FPC otftfset is model uwependent,
since this activation record is created and interpreted
dynamically.

1.3.2.9.2 Internal FORTKRAN Cails

Since FORTRAN is a static lancuage, it is unnecessary to save
the entire state of a general external call. The followinyg in=
structions implement an efficient intra=lanaquage, intra=procedgure
object call.

Memo no. 327
7/8ov/ |7
page 34

The stack is useg to <contain activation records (return
address and old frame pointer), actual argumnent pointers, and
locals (if necessary).

i |
New SP=>tmemcccccemcercrcnmcmn——y
| i
| locals {
]]

LA AL LY LA L LI LE LR LR

| save_link i 1ink to state save

| |
| argument pointers [

LA L L L P DL L L LY X3

I ola PC (return addpr |

o . - - 0w o

I ola FP (dynamic Ink) |

0l SF=>tmmmmnmmmcmcarcmcmmmm -

|]
| old frame |
| |

Old FP—>+——---—-wn—--———w—-——-n—d‘-

stack_frame 1S RECORD
state_save tRECORD

old_FP tPOINTER %to caller’s frame
old_PC tPOLNTER sto return point
END RECURD?

argument_ptrs tARRAY In] OF POLINTERS,

save_link tPOINTER TO state_save?

locals :BITL initial_frame_size 1;

LNy RELOKRD;

vMemo no. 327

f/nov/ 7

page 35
* CALLR <parm=count> <name=argl>... <name=aran>
<relative_offset>
* CALLA <parm=count> <name=argl> ... <name=argn> <name=1>

This instruction implements a full internal FUR[RAN call. oince an
internal procedure utilizes the same Static Data Ubject ana Stack
Object as the calling procedure, only tne FP offset and #C offset
need be saved and restored upon return.

Since activation recoras are created and interpreted
dynamically, state may be saved in any convient, model=depenuent
manner without i1mpacting transoortability of object proarams or
data.

The first operand is an unsigned literal specifying the number
ot actual parameters (arguments) peing passed. MNne name svilable
follows in the I=stream for each actual parameter. The Jlast
argument name is followed by an entry heauder adaress specifieud as a
relative offset (LALLKR) or an absolute offset (CALLA).

Exceptions? 5

Memo no. 3c¢7

{/viov/ 17
page 3o
PROCEDURE CALLR C(arg_count :literallb;
name=arq :ARRAY lara_count) uF

names;
reiative_offset :literalyb);

VAR]ApLt temp_rea: FPOINIEKS
EnND VARIABLLES;

temp_rey := SF?
PUSH(FP);
PUSH(PC):

% The PL is assumed to point to the NEXT SE4UEMNITAL
%Z instruction,

FUR i:l1..arg_count [NCREASTNG RePLAT
PUSH(C resolvel name_arali])7

EnD FUR;
FP := SF7?
PUSH(temp_reg)i
SP 2= Fr + (PL + relative_offset).initial_frame_s12ze;}
PL := (PC + relative_offset).code_pointer;

END PKRNCEDURE CALLR;

The absolute call (CALLA) qgiffers from relative calit (LALLK)
in that the initial frame size and code pointer are |ocateuy rela-
tive to PUPTR by evaluatina name=1, rather than relative to tne
current P(:

P + (POPiR+eval(resolvel name~ij)).initial_frame_size;
POPTR + evall resolve(name=j)J).code_pointer:

nn
~ T

Memo no. 3c7

7/nov/i7
page 3/
* ReT
This instruction implements a return from a ful] internai FuR|IRAN

call. 1t reestablishes the state which was modified by calir or
calla.

Exceptions:)

PxOQCEDURE RET 4no operanas

SP := FP.save_link: %0ld stack pointer is

% link to state save area
PC 2= FP.save_linkd.old_P(7?
Fr 2= FP.save_linka,.old_FPi:

EnND PROCEDURE ReT;

1.3.2.9.3%3 External Call Instruction

* CALLX <parm=count> <name=argl!> ... <name=argn> <name=-entry>

The first operand is an unsianed literal syllable indicating the
number of actual parameters. One name follows in the l=stream for
each actual parameter. The last operana i1s a name which resojves
to the address of a Gate pointer 1n some Procedure uUbject,

Exceptions: 5

Memo no. 3¢7
T/mov/ (7
page 3o

* ReTX

A return from an external call 1s pertormed.

Fxceptions: 5
The external call is defined arcnitecturally. oee the proauct
description for a discussion of its operation.
1.3.2.10 Extended Instructions
The feollowing instructions are implemented in ooth single and

douple precision versions (REAL and DOUBLE PRECiLSION). "real"
means RtAL, and "double precision" means UQUBLE PREULTSTUN,

1.3.2.1V.1 Transcendental Functions

* SIM <name=b> <name=a>

The trigonometric SIN ot real value "b" is calculated and replaces
real variable "a"

Exceptions: 0, 1r 2, 5/ S

* cus

The trigonometric CUS of real value "b" is caiculated and replaces

real variable "a"

Fxceptions: 0, 1y 2+ 5 5

vMemo no. 3c¢7
[/Nov/ (7
page 3

* TAN

The trigonometric TAN of real value "0" is calculated and replaces
real variable "a"

Exceptions? 0, 1, 2y 5, 5

* ATAN

Calculate the arctanaent of douple precision value "b" and replace
[1] "

the double precision variable "a
Exceptions: 0, 1, 2+ 5, S
* ATANZ <name=x> <name=y> <npame=a>

Calculate the quotient of real value "y" diviged by real value "x".
It the calculation overflows, remlace real variable "a" with the
arctangent of "infinity". utherwise, calculate the arctanyent of
ﬂy"/"xll and rep]ac9 llaﬂ

Exceptions: 0, 1¢ 3, >

* D8I

Calculate the sin of doublie precision value "o" and replace uouble
precision variable "a"

Memo no. 3¢7

{/nNov/T77
page 4y
Exceptions: 0, L, 2, 5, 5
* DCOS
Calculate the cos of double precision value "b" and replace the

double precision variable "g"

Fxceptions:? 0, 1, 2, 5¢ 5

* NTAN

Calculate the tanyent of coubie precision value "p" and replace the

double precision variable "a"

Exceptions: 0, 1¢v 2, 5/ 5

* DATAN

Calculate the arctanagent of double precision value "b" and rerlace
the douple precision variablie "a"

Fxceptions?® 0, 1, 2, 5, 5B

Memo Nou. 3¢7

T/Nov/i7

page 41
* DATAN¢ <name=x> <name=y> <name=3>
Calculate the auotient of douple precision values "y" divided oy
"x", [f the calculation overflows, replace the douwnle orecision
variable "a" with the arctan of "infinity". Otherwise, calculate

the arctangent of "y"/"x" and replace "a"
Fxceptions: 0, 1, 3, o

1.3.2.10.2 nyperbolic Functions

* SiNH

Calculate the hyperpolic sin of real value "b", the resuit repla-
cing real variaple "a"

Fxceptions: 0, 1, 2, 5, S

* cusH

Calculate the hyperpoolic cos of real value "b", tne result repgla-
cing real variable "a"

Exceptions: 0, 1 2(5, 5

Memo no. 3¢7

7/Nov/ 77
page 4d4¢2
* TANH
Calculate the hyperpolic tangent of real value "b", the result
replacina real value "a"
Fxceptions: 0, 1r 2+ 5¢ 5
* DSInH
Calcuiate the hyperpvolic sin of douonle precision value "u", the
result replacing aouhle prec variable "a"
Exceptions: O, 1r 2+ 5¢ 5
* DCOSH
Calculate the hyperpolic cos of double precision value "u", the

result replacing double precision variaple "a"

Exceptions: 0, 1y 24 5+ 5

* DTANH

Calculate the hyperpolic tangent of double precision vaiue "b", the
result replacing double precision variaple "a"

Exceptions: 0, 1r 2+ 50 S

Memo no. 327
T/nav/ (7
page 45

1.3.2.10.5 Uther 1ntrinsic Functions

* EXP

The real vajue "exx<value of real variaole "b"> is calcuiateu and
replaces real variable "a"

Exceptions: O, 1r 2¢ 5, 5

* LUG

The natural logarithm of real value "p" is calculated and replaces
real variable "a"

Exceptions: 0, 1¢ 2+ 5, S

* E10

Tne real value "luxx<vajue of real variable "p"> 4is calculateg and
replaces real variable "a"

Fxceptions: 0, 1, 2+ 5+ 5

Memo no. 3¢7
T7/8ov/i7
page 44

* LuG1o

Tne common (base 10) logarithm of real value "b" 1s calcuiateud and
replaces real variaole "a"

Exceptions: 0, 10 2, 5, 8

* SuWRT

Calculiate the sgquare root of the real value of "b" the result

replacing the real variable "ag"

Exceptions: 0, 1¢r 2y 5/ S

* LeEXP

Calculate the natural logarithm base raised to the double precision
value "b", the result replacing tne douole precision variabie "a"

Exceptions: 0, 1y 2+ 5+ 5

* DLOG

Calculate the natural logarithm of the double precision value "b",
the result replacing the aouble precision variable "a"

Fxceptions: 0, 1, 24 5¢ 5

~~

Memo no. 3c¢7
T/80ov/ 77
rage 4o

~—y -

- g+~

* DELO

Calculate the common logarithm base (10.) raised to tne «gouble
precision value "bo", the result replacina dounle precision variable
" "

&

Fxceptions: 0, 1, 2+ 3¢ 5

* DLOG1Y

Calculate the common log. of aoubie precision value "p" the result
repiacing douole prec variable "a"

Fxceptions: 0, 1, 2, 5, 5

* D3QRT

" "

Calculate the sguare root ot double precision value "o", the result

repiacina the doucvle precision variabie "a"

Exceptions: 0, 1¢ 24 5+ 5

